{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 7.30 Nozzle Sizing Calculations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Objective: Size a long-radius venturi nozzle flow meter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A system is designed with a flow rate of 225 gpm of water at 60 F flowing through 6\" schedule 40 pipe. A long-radius nozzle flow has been requested. A measured head loss of 4 feet is the design measurement, with 1D upstream and 1/2D downstream taps.\n", "\n", "Find the required diameter of the nozzle." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from fluids.units import *\n", "from math import pi\n", "\n", "mu = 1.1*u.cP\n", "rho = 62.364*u.lb/u.ft**3\n", "\n", "NPS, Di, Do, t = nearest_pipe(NPS=6, schedule='40')\n", "A = 0.25*pi*Di*Di\n", "\n", "dP = 4*u.feet_H2O\n", "\n", "P1 = 10*u.bar # assumed, not very important\n", "P2 = P1 - dP\n", "k = 1.3 # not important\n", "\n", "Q = 225*u.gal/u.min\n", "m = Q*rho" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Nozzle diameter found to be 2.405956560384601 inch.\n" ] } ], "source": [ "Do = differential_pressure_meter_solver(D=Di, rho=rho, mu=mu, k=k, P1=P1, P2=P2, \n", " m=m, meter_type='long radius nozzle', \n", " taps='D')\n", "print('Nozzle diameter found to be %s.' %(Do.to(u.inch)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The solution given in Crane is 2.40 inches after two iterations and has an error of 0.4 gpm, whereas the answer above has almost zero theoretical error." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 7.31 NPRD Calculations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The Non-recoverable pressure drop (NRPD) is the permanent pressure drop associated with the flow through the measurement device.\n", "Find the NPRD for example 7.30." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "0.983900143257091 dimensionless" ], "text/latex": [ "$0.983900143257091\\ dimensionless$" ], "text/plain": [ "0.983900143257091 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C, epsilon = differential_pressure_meter_C_epsilon(D=Di, D2=Do, m=m, P1=P1, P2=P2, rho=rho, mu=mu, k=k,\n", " meter_type='long radius nozzle')\n", "C" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "1.2691031737597416 pound_force_per_square_inch" ], "text/latex": [ "$1.2691031737597416\\ \\mathrm{pound\\_force\\_per\\_square\\_inch}$" ], "text/plain": [ "1.2691031737597416 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dP = differential_pressure_meter_dP(D=Di, D2=Do, P1=P1, P2=P2, C=C, \n", " meter_type='long radius nozzle')\n", "\n", "dP.to(u.psi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The solution given in Crane is 1.272 psi." ] } ], "metadata": { "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 1 }